

Easy Laravel 5
A Hands On Introduction Using a Real-World Project

W. Jason Gilmore

This book is for sale at http://leanpub.com/easylaravel

This version was published on 2016-10-10

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2016 W. Jason Gilmore

http://leanpub.com/easylaravel
http://leanpub.com/
http://leanpub.com/manifesto

Also By W. Jason Gilmore
Easy Active Record for Rails Developers

Easy E-Commerce Using Laravel and Stripe

Easy React

http://leanpub.com/u/wjgilmore
http://leanpub.com/easyactiverecord
http://leanpub.com/easyecommerce
http://leanpub.com/easyreact

Dedicated to The Champ, The Princess, and Little Winnie. Love, Daddy

Contents

Introduction . 1
What’s New in Laravel 5? . 2
About this Book . 3
Introducing the TODOParrot Project . 6
About the Author . 6
Errata and Suggestions . 6

Chapter 1. Introducing Laravel . 7
Installing Laravel . 7
Managing Your Laravel Project Development Environment 8
Creating the TODOParrot Application . 21
Configuring Your Laravel Application . 25
Useful Development and Debugging Tools . 28
Testing Your Laravel Application with PHPUnit . 37
Conclusion . 39

Introduction

ATTENTION: I’m in the middle of a major book update for Laravel 5.3. The first five
chapters have been updated, and I continue working on chapter 6 and beyond. As a reader,
you’ll always receive free updates so stay tuned for update notifications!

I’ve spent the vast majority of the past 16 years immersed in the PHP language. During this time I’ve
written eight PHP-related books, including a bestseller that has been in print for more than eleven
years. Along the way I’ve worked on dozens of PHP-driven applications for clients ranging from
unknown startups to globally-recognized companies, penned hundreds of articles about PHP and
web development for some of the world’s most popular print and online publications, and personally
delivered training sessions to hundreds of developers. So you might be surprised to learn a few years
ago I became rather disenchanted with the very language that for so very long had consumed the
better part of my professional career. It felt like there were more exciting developments taking place
within other programming communities, and wanting to be part of that buzz, I wandered off. In
recent years, I spent themajority of my timeworking on a variety of projects including among others
several ambitious Ruby on Rails applications and even a pretty amazing Linux-powered robotic
device.

Of course, old habits are hard to break and so during this time I kept tabs on the PHP community,
watching with great interest as several talented developers worked tirelessly to inject that missing
enthusiasm back into the language. During my time in the wilderness Nils Adermann and Jordi
Boggiano released the Composer¹ dependency manager. The Framework Interoperability Group²
was formed. And in 2012 the incredibly talented Taylor Otwell³ created the Laravel framework⁴
which quickly soared in popularity to become the most followed PHP project on GitHub, quickly
surpassing projects and frameworks that had been under active development for years.

At some point I spent some time with Laravel and after a scant 30 minutes knew it was the real deal.
Despite being a relative newcomer to the PHP framework landscape, Laravel is incredibly polished,
offering a shallow learning curve, easy test integration, a great object-relational mapping solution
called Eloquent, and a wide variety of other great features. In the pages to follow I promise to add
you to the ranks of fervent Laravel users by providing a wide-ranging and practical introduction to
its many features.

¹https://getcomposer.org/
²http://www.php-fig.org/
³http://taylorotwell.com/
⁴http://laravel.com/

https://getcomposer.org/
http://www.php-fig.org/
http://taylorotwell.com/
http://laravel.com/
https://getcomposer.org/
http://www.php-fig.org/
http://taylorotwell.com/
http://laravel.com/

Introduction 2

What’s New in Laravel 5?

Laravel 5 is an ambitious step forward for the popular framework, offering quite a few new features.
In addition to providing newcomers with a comprehensive overview of Laravel’s fundamental
capabilities, I’ll devote special coverage to several of these new features, including:

• New project structure: Laravel 5 projects boast a revamped project structure. In chapter 1
I’ll review every file and directory comprising the new structure so you know exactly where
to find and place project files and other assets.

• Improved environment configuration: Laravel 5 adopts the PHP dotenv⁵ package for
environment configuration management. I think Laravel 4 users will really find the new
approach to be quite convenient and refreshing. I’ll introduce you to this new approach in
chapter 1.

• Elixir: Elixir⁶ offers Laravel users a convenient way to automate various development
tasks using Gulp⁷, among them CSS and JavaScript compilation, JavaScript linting, image
compression, and test execution. I’ll introduce you to Elixir in chapter 2.

• Flysystem: Laravel 5 integrates Flysystem⁸, which allows you to easily integrate your
application with remote file systems such as Dropbox, S3 and Rackspace.

• Form requests: Laravel 5’s new form requests feature greatly reduces the amount of code
you’d otherwise have to include in your controller actions when validating form data. In
chapter 5 I’ll introduce you to this great new feature.

• Middleware: Middleware is useful when you want to interact with your application’s request
and response process in a way that doesn’t pollute your application-specific logic. Chapter 7
is devoted entirely to this topic.

• Easy user authentication: User account integration is the norm these days, however inte-
grating user registration, login, logout, and password recovery into an application is often
tedious and time-consuming. Laravel 5 all but removes this hassle by offering these features
as a turnkey solution. You’ll learn all about Laravel authentication in chapter 6.

• Event handling: Laravel 5 event handlers allow you to reduce redundant logic otherwise
found in your controllers by packaging bits of logic separately and then executing that logic
in conjunction following certain events, such as sending an e-mail following the registration
of a new user. In chapter 11 you’ll learn how to create an event handler and then integrate a
corresponding event listener into your code.

• The Lumen Microframework: Although not part of the Laravel framework per se, Lumen is
an optimized version of Laravel useful for creating incredibly fast micro-services and REST
APIs. I’ll introduce you to this great framework in chapter 10.

⁵https://github.com/vlucas/phpdotenv
⁶https://github.com/laravel/elixir
⁷http://gulpjs.com/
⁸https://github.com/thephpleague/flysystem

https://github.com/vlucas/phpdotenv
https://github.com/laravel/elixir
http://gulpjs.com/
https://github.com/thephpleague/flysystem
https://github.com/vlucas/phpdotenv
https://github.com/laravel/elixir
http://gulpjs.com/
https://github.com/thephpleague/flysystem

Introduction 3

But we’re not going to stop with a mere introduction to these new features. I want you to learn how
to build real-world Laravel applications, and so I additionally devote extensive coverage to about
topics such as effective CSS and JavaScript integration, automated testing, and more!

About this Book

This book is broken into twelve chapters and an appendix, each of which is briefly described below.

Chapter 1. Introducing Laravel

In this opening chapter you’ll learn how to create and configure your Laravel project both using
your existing PHP development environment and Laravel Homestead. I’ll also show you how to
properly configure your environment for effective Laravel debugging, and how to expand Laravel’s
capabilities by installing several third-party Laravel packages that promise to supercharge your
development productivity. We’ll conclude the chapter with an introduction to PHPUnit, showing
you how to create and execute your first Laravel unit test!

Chapter 2. Managing Your Project Controllers, Layout, Views, and
Other Assets

In this chapter you’ll learn how to create controllers and actions, and define the routes used to access
your application endpoints using Laravel 5’s new route annotations feature. You’ll also learn how to
create the pages (views), work with variable data and logic using the Blade templating engine, and
reduce redundancy using layouts and view helpers. I’ll also introduce Laravel Elixir, a new feature for
managing Gulp⁹ tasks, and show you how to integrate the popular Bootstrap front-end framework
and jQuery JavaScript library. We’ll conclude the chapter with several examples demonstrating how
to test your controllers and views using PHPUnit.

Chapter 3. Talking to the Database

In this chapter we’ll turn our attention to the project’s data. You’ll learn how to integrate and
configure the database, create and manage models, and interact with the database through your
project models. You’ll also learn how to deftly configure and traverse model relations, allowing
you to greatly reduce the amount of SQL you’d otherwise have to write to integrate a normalized
database into your application.

⁹http://gulpjs.com/

http://gulpjs.com/
http://gulpjs.com/

Introduction 4

Chapter 4. Model Relations, Scopes, and Other Advanced Features

Building and navigating table relations is an standard part of the development process even when
working on the most unambitious of projects, yet this task is often painful when working with many
web frameworks. Fortunately, using Laravel it’s easy to define and traverse these relations. In this
chapter I’ll show you how to define, manage, and interact with one-to-one, one-to-many, many-to-
many, has many through, and polymorphic relations. You’ll also learn about a great feature known
as scopes which encapsulate the logic used for more advanced queries, thereby hiding it from your
controllers.

Chapter 5. Integrating Web Forms

Your application will almost certainly contain at least a few web forms, which will likely interact
with the models, meaning you’ll require a solid grasp on Laravel’s form generation and processing
capabilities. While creating simple forms is fairly straightforward, things can complicated fast when
implementing more ambitious solutions such as forms involving multiple models. In this chapter
I’ll go into extensive detail regarding how you can integrate forms into your Laravel applications,
introducing Laravel 5’s new form requests feature, covering both Laravel’s native form generation
solutions as well as several approaches offered by popular packages. You’ll also learn how to upload
files using a web form and Laravel’s fantastic file upload capabilities.

Chapter 6. Integrating Middleware

Laravel 5 introduces middleware integration. In this chapter I’ll introduce you to the concept of
middleware and the various middleware solutions bundled into Laravel 5. You’ll also learn how to
create your own middleware solution!

Chapter 7. Authenticating and Managing Your Users

Most modern applications offer user registration and preference management features in order to
provide customized, persisted content and settings. In this chapter you’ll learn how to integrate user
registration, login, and account management capabilities into your Laravel application.

Chapter 8. Creating a Restricted Administration Console

This chapter shows you how to identify certain users as administrators and then grant them
access to a restricted web-based administrative console using a prefixed route grouping and custom
middleware.

Introduction 5

Chapter 9. Deploying, Optimizing and Maintaining Your
Application

“Deploy early and deploy often” is an oft-quotedmantra of successful software teams. To do so you’ll
need to integrate a painless and repeatable deployment process, and formally define and schedule
various maintenance-related processes in order to ensure your application is running in top form. In
this chapter I’ll introduce the Laravel 5 Command Scheduler, which you can use to easily schedule
rigorously repeating tasks. I’ll also talk about optimization, demonstrating how to create a faster
class router and how to cache your application routes. Finally, I’ll demonstrate just how easy it can
be to deploy your Laravel application to the popular hosting service Heroku, and introduce Laravel
Forge.

Chapter 10. Introducing the Lumen Microframework

This chapter introduces the new Laravel Lumen microframework. You’ll learn all about Lumen
fundamentals while building a companionmicroservice for the TODOParrot companion application!

Chapter 11. Introducing Events

This chapter introduces Laravel Events, showing you how to create event handlers, event listeners,
and integrate events into your application logic. You’ll also learn all about Laravel’s fascinating
event broadcasting capabilities, accompanied by a real-world example.

Chapter 12. Introducing Vue.js

Vue.js¹⁰ has become the Laravel community’s de facto JavaScript library, and for good reason; it
shares many of the practical, productive attributes Laravel developers have come to love. Chapter
12 introduces Vue.js’ fundamental features, and shows you how to integrate highly interactive and
eye-appealing interfaces into your Laravel application.

Appendix B. Feature Implementation Cheat Sheets

The book provides occasionally exhaustive explanations pertaining to the implementation of key
Laravel features such as controllers, migrations, models and views. However, once you understand
the fundamentals it isn’t really practical to repeatedly reread parts of the book just to for instance
recall how to create a model with a corresponding migration or seed the database. So I thought it
might be useful to provide an appendix which offered a succinct overview of the steps necessary
to carry out key tasks. This is a work in progress, but already contains several pages of succinct
explanations.

¹⁰http://vuejs.org/

http://vuejs.org/
http://vuejs.org/

Introduction 6

Introducing the TODOParrot Project

Learning about a new technology is much more fun and practical when introduced in conjunction
with real-world examples. Throughout this book I’ll introduce Laravel concepts and syntax using
code found in TODOParrot¹¹, a web-based task list application built atop Laravel.

The TODOParrot code is available on GitHub at https://github.com/wjgilmore/todoparrot¹². It’s
released under the MIT license, so feel free to download the project and use it as an additional
learning reference or in any other manner adherent to the licensing terms.

About the Author

W. Jason Gilmore¹³ is a software developer, consultant, and bestselling author. He has spent much
of the past 15 years helping companies of all sizes build amazing solutions. Recent projects include
a SaaS for the interior design and architecture industries, an e-commerce analytics application for
a globally recognized publisher, an intranet application for a major South American avocado farm,
and a 10,000+ product online store.

Jason is the author of eight books, including the bestselling Beginning PHP and MySQL, Fourth
Edition, Easy E-Commerce Using Laravel and Stripe (with co-author Eric L. Barnes), and Easy Active
Record for Rails Developers.

Over the years Jason has published more than 300 articles within popular publications such as
Developer.com, JSMag, and Linux Magazine, and instructed hundreds of students in the United
States and Europe. Jason is cofounder of the wildly popular CodeMash Conference¹⁴, the largest
multi-day developer event in the Midwest.

Away from the keyboard, you’ll often find Jason playing with his kids, hunched over a chess board,
and having fun with DIY electronics.

Jason loves talking to readers and invites you to e-mail him at wj@wjgilmore.com.

Errata and Suggestions

Nobody is perfect, particularly when it comes to writing about technology. I’ve surely made some
mistakes in both code and grammar, and probably completely botched more than a few examples
and explanations. If you would like to report an error, ask a question or offer a suggestion, please
e-mail me at wj@wjgilmore.com.

¹¹http://todoparrot.com
¹²https://github.com/wjgilmore/todoparrot
¹³http://www.wjgilmore.com
¹⁴http://www.codemash.org

http://todoparrot.com/
https://github.com/wjgilmore/todoparrot
http://www.wjgilmore.com/
http://www.codemash.org/
http://todoparrot.com/
https://github.com/wjgilmore/todoparrot
http://www.wjgilmore.com/
http://www.codemash.org/

Chapter 1. Introducing Laravel
Laravel is a web application framework that borrows from the very best features of other popular
framework solutions, among themRuby on Rails andASP.NETMVC. For this reason, if you have any
experience working with other frameworks then I’d imagine you’ll make a pretty graceful transition
to Laravel. Newcomers to framework-driven development will have a slightly steeper learning curve
due to the introduction of new concepts, however I promise Laravel’s practical and user-friendly
features will make your journey an enjoyable one.

In this chapter you’ll learn how to install Laravel and how to manage your projects using either the
Homestead virtual machine or Valet development environment. We’ll also create the companion
project which will serve as the basis for introducing new concepts throughout the remainder of the
book. I’ll also introduce you to several powerful debugging and development tools crucial to efficient
Laravel development. Finally, you’ll learn a bit about Laravel’s automated test environment, and how
to write automated tests to ensure your application is operating precisely as expected.

Installing Laravel

The easiest way to install Laravel is via PHP’s Composer packagemanager (https://getcomposer.org).
If you’re not already using Composer to manage your PHP application dependencies, it’s easily
installed on all major platforms (OS X, Linux, and Windows among them), so head over to the
website and take care of that first before continuing.

With Composer installed, run the following command to install Laravel:

1 $ composer global require "laravel/installer"

After installing the Laravel installer, you’ll want to add the directory ∼/.composer/vendor/bin to
your system path so you can execute the laravel command anywhere within the operating system.
The process associated with updating the system path is operating system-specific however a quick
Google search will produce all of the instructions you need.

With the system path updated, open a terminal and execute the following command:

1 $ laravel --version

2 Laravel Installer version 1.3.1

You’ll primary use the laravel CLI to generate new Laravel projects, which you can do with the
new command:

Chapter 1. Introducing Laravel 8

1 $ laravel new igniterental

2 Crafting application...

3 Loading composer repositories with package information

4 Installing dependencies (including require-dev) from lock file

5 ...

6 Application ready! Build something amazing.

If you peek inside the igniterental directory you’ll see all of the files and directories which
comprise a Laravel application! While I know diving into the code found in this newly generated
project is very tantalizing, I implore you to be patient and take time to first learn more about how
to manage your locally hosted Laravel projects. Homestead and Valet are Laravel’s two standard
solutions, and I’ll introduce you to both next.

Managing Your Laravel Project Development
Environment

Laravel is a PHP-based framework that you’ll typically use in conjunction with a database such as
MySQL or PostgreSQL. Therefore, before you can begin building a Laravel-driven web application
you’ll need to first install PHP 5.6.4 or newer and one of Laravel’s supported databases (MySQL,
PostgreSQL, SQLite, and Microsoft SQL Server). While those of you who are seasoned PHP
developers likely already have local versions of this software installed on your development laptop,
I’d like to recommend two far more efficient solutions which completely eliminate the need to
manage this software on your own. Fortunately for newcomers these solutions will be equally
welcome since it allows you to avoid the often time-consuming and error-prone process of installing
and configuring PHP, MySQL, and a web server. These solutions are Homestead and Valet, and in
this section you’ll learn about both.

Introducing Homestead

PHP is only one of several technologies you’ll need to have access to in order to begin building
Laravel-driven web sites. Additionally you’ll need to install a web server such as NGINX¹⁵, a
database server such as MySQL¹⁶ or PostgreSQL¹⁷, and often a variety of supplemental technologies
such as Redis¹⁸ and Grunt¹⁹. As youmight imagine, it can be quite a challenge to install and configure
all of these components, particularly when you’d prefer to be writing code instead of grappling with
configuration issues.

¹⁵http://nginx.org/
¹⁶http://www.mysql.com/
¹⁷http://www.postgresql.org/
¹⁸http://redis.io/
¹⁹http://gruntjs.com/

http://nginx.org/
http://www.mysql.com/
http://www.postgresql.org/
http://redis.io/
http://gruntjs.com/
http://nginx.org/
http://www.mysql.com/
http://www.postgresql.org/
http://redis.io/
http://gruntjs.com/

Chapter 1. Introducing Laravel 9

In recent years virtual machines dramatically lowered this bar. A virtual machine is a software-
based implementation of a computer that can be run inside the confines of another computer (such
as your laptop), or even inside another virtual machine. This is incredible technology, because for
instance you can use a virtual machine to run an Ubuntu Linux server on your Windows 10 laptop,
or vice versa. Further, it’s possible to create a customized virtual machine image preloaded with
a select set of software. This image can then be distributed to fellow developers, who can run the
virtual machine and take advantage of the custom software configuration. This is precisely what the
Laravel developers have done with Homestead²⁰, a virtual machine which bundles everything you
need to get started building Laravel-driven websites.

Homestead is currently based on Ubuntu 16.04, and includes everything you need to get started
building Laravel applications, including PHP 7.0, Nginx, MySQL, PostgreSQL and a variety of other
useful utilities such as Redis and Memcached. It runs flawlessly on OS X, Linux and Windows,
and the installation process is very straightforward, meaning in most cases you’ll be able to begin
managing Laravel applications in less than 30 minutes.

Mac users have another option at their disposal when it comes to locally hosting a Laravel
application. It’s called Valet, and later in this chapter I’ll introduce Valet. If you’re looking
for a no-frills hosting environment during the development process, Valet is way to go
although for most readers I still recommend spending the extra time and effort required to
install Homestead because of all the additional features it has to offer.

Installing Homestead

Homestead requires Vagrant²¹ and VirtualBox²². User-friendly installers are available for all of
the common operating systems, including OS X, Linux and Windows. Take a moment now to
install Vagrant and VirtualBox. Once complete, open a terminal window and execute the following
command:

1 $ vagrant box add laravel/homestead

2 ==> box: Loading metadata for box 'laravel/homestead'

3 box: URL: https://atlas.hashicorp.com/laravel/homestead

4 This box can work with multiple providers! The providers that it

5 can work with are listed below. Please review the list and choose

6 the provider you will be working with.

7

8 1) virtualbox

9 2) vmware_desktop

10

²⁰http://laravel.com/docs/homestead
²¹http://www.vagrantup.com/
²²https://www.virtualbox.org/wiki/Downloads

http://laravel.com/docs/homestead
http://www.vagrantup.com/
https://www.virtualbox.org/wiki/Downloads
http://laravel.com/docs/homestead
http://www.vagrantup.com/
https://www.virtualbox.org/wiki/Downloads

Chapter 1. Introducing Laravel 10

11 Enter your choice: 1

12 ==> box: Adding box 'laravel/homestead' (v0.4.2) for provider: virtualbox

13 box: Downloading: https://atlas.hashicorp.com/laravel/boxes/homestead/versio\

14 ns/0.4.2/providers/virtualbox.box

15 ==> box: Successfully added box 'laravel/homestead' (v0.4.2) for 'virtualbox'!

Throughout the book I’ll use the $ symbol to represent the terminal prompt.

This command installs the Homestead box. A box is just a term used to refer to a Vagrant package.
Packages are the virtual machine images that contain the operating system and various programs.
The Vagrant communitymaintains hundreds of different boxes useful for building applications using
a wide variety of technology stacks, so check out this list of popular boxes²³ for an idea of what else
is available.

Once the box has been added, you’ll next want to install Homestead. To do so, you’ll ideally using
Git to clone the repository. If you don’t already have Git installed you can easily do so by heading
over to the Git website²⁴ or using your operating system’s package manager.

Next, open a terminal and enter your home directory:

1 $ cd ~

Then use Git’s clone command to clone the Homestead repository:

1 $ git clone https://github.com/laravel/homestead.git Homestead

2 Cloning into 'Homestead'...

3 remote: Counting objects: 1497, done.

4 remote: Compressing objects: 100% (5/5), done.

5 remote: Total 1497 (delta 0), reused 0 (delta 0), pack-reused 1492

6 Receiving objects: 100% (1497/1497), 241.74 KiB | 95.00 KiB/s, done.

7 Resolving deltas: 100% (879/879), done.

8 Checking connectivity... done.

You’ll see this has resulted in the creation of a directory named Homestead in your home directory
which contains the repository files. Next, you’ll want to enter this directory and execute the
following command:

²³https://vagrantcloud.com/discover/popular
²⁴https://git-scm.com/downloads

https://vagrantcloud.com/discover/popular
https://git-scm.com/downloads
https://vagrantcloud.com/discover/popular
https://git-scm.com/downloads

Chapter 1. Introducing Laravel 11

1 $ bash init.sh

If you’re on Windows you’ll instead want to run the following command:

1 $ init.bat

This will create a directory called .homestead, which will also be placed in your home directory.
You’ll modify the files found in this directory to configure Homestead in a variety of ways, including
most notably how to find and serve theweb applicationswhichwill be hosted on the virtual machine.

Next you’ll want to configure the project directory that you’ll share with the virtual machine. Doing
so requires you to identify the location of your public SSH key, because key-based encryption is used
to securely share this directory. If you don’t already have an SSH key and are running Windows,
this SiteGround tutorial²⁵ offers a succinct set of steps. If you’re running Linux or OS X, nixCraft²⁶
offers a solid tutorial.

You’ll need to identify the location of your public SSH key in the .homestead directory’s Home-

stead.yaml file. Open this file and locate the following line:

1 authorize: ~/.ssh/id_rsa.pub

If you’re running Linux or OS X, then you probably don’t have to make any changes to this line
because SSH keys are conventionally stored in a directory named .ssh found in your home directory.
If you’re runningWindows then you’ll need to update this line to conform toWindows’ path syntax
which looks like this:

1 authorize: c:/Users/wjgilmore/.ssh/id_rsa.pub

If you’re running Linux or OS X and aren’t using the conventional SSH key location, or are running
Windows you’ll also need to modify the keys property. For instance Windows users would have to
update this section to look something like this:

1 keys:

2 - c:/Users/wjgilmore/.ssh/id_rsa

Next you’ll need to modify the Homestead.yaml file’s folders list to identify the location of your
Laravel project (which we’ll create a bit later in this chapter). The two relevant Homestead.yaml
settings are folders and sites, which by default look like this:

²⁵http://kb.siteground.com/how_to_generate_an_ssh_key_on_windows_using_putty/
²⁶http://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/

http://kb.siteground.com/how_to_generate_an_ssh_key_on_windows_using_putty/
http://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
http://kb.siteground.com/how_to_generate_an_ssh_key_on_windows_using_putty/
http://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/

Chapter 1. Introducing Laravel 12

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

4

5 sites:

6 - map: homestead.app

7 to: /home/vagrant/Code/Laravel/public

This particular step tends to be the source of great confusion Homestead beginners, so pay close
attention to the following description. The folders structure’s map attribute identifies the location
in which your Laravel project will be located. The default value is ∼/Code, meaning Homestead
expects your project to reside in a directory named Code found in your home directory. You’re free
to change this to any location you please, keeping in mind for the purposes of this introduction
the directory must identify your Laravel project’s root directory (I realize we haven’t created the
project or directory just yet, so just keep in mind this value must identify that soon-to-be-created
directory). The folders structure’s to attribute identifies the location on the virtual machine that
will mirror the contents of the directory defined by the map key, thereby making the contents of your
local directory available to the virtual machine. You almost certainly do not have to change the to
attribute’s default value, so don’t worry about it for now.

Windows users should keep in mind the tilde (∼) home directory shortcut is not supported
on Windows and so you’ll need to specify the absolute path to your chosen directory.

The sites structure’s map attribute defines the domain name you’ll use to access the Laravel
application via the browser. For instance, you might change this to dev.todoparrot.com. Keep in
mind this domain name is used purely for internal developmental purposes, so you don’t actually
have to own the domain name.

Finally, the sites structure’s to attribute defines the Laravel project’s root web directory, which is
/public by default. This isn’t just some contrived setting; a file named index.php resides in your
Laravel application’s /public directory, and it “listens” for incoming requests to your application
and kicks off the process which ultimately results in the client’s desired resource (web page, JSON
data, etc.) being returned.

Despite my best efforts this explanation is likely clear as mud, so let’s clarify with an example. Begin
by setting the folders structure’s map attribute to somewhere within the directory where you tend
to manage your various software projects. For instance, mine is set like this:

1 folders:

2 - map: ~/Code/dev.todoparrot.com

3 - to: /home/vagrant/Code

Next, modify the sites structure to look like this:

Chapter 1. Introducing Laravel 13

1 sites:

2 - map: dev.todoparrot.com

3 to: /home/vagrant/Code/dev.todoparrot.com/public

Save the changes and we’ll next create a quick test to confirm you can indeed talk to the Homestead
webserver. Create the directory identified by the map attribute, and inside it create a directory named
public. Create a file named index.php inside the public directory, adding the following contents
to it:

1 <?php echo "Hello from Homestead!"; ?>

Save these changes, and then run the following command from within your Homestead directory:

1 $ vagrant up

2 Bringing machine 'default' up with 'virtualbox' provider...

3 ==> default: Importing base box 'laravel/homestead'...

4 ==> default: Matching MAC address for NAT networking...

5 ==> default: Checking if box 'laravel/homestead' is up to date...

6 ==> default: Setting the name of the VM: homestead-7

7 ==> default: Clearing any previously set network interfaces...

8 ==> default: Preparing network interfaces based on configuration...

9 ...

10 ==> default: Forwarding ports...

11 default: 80 => 8000 (adapter 1)

12 default: 443 => 44300 (adapter 1)

13 default: 3306 => 33060 (adapter 1)

14 default: 5432 => 54320 (adapter 1)

15 default: 22 => 2222 (adapter 1)

16 ==> default: Running 'pre-boot' VM customizations...

17 ==> default: Booting VM...

18 $

Your Homestead virtual machine is up and running! With that done, we have one remaining step.
We’ll need to configure your laptop to recognize what it should do when the dev.todoparrot

URL defined in Homestead.yaml is requested in the browser. To do so, you’ll need to update your
development machine’s hosts file so you can easily access the server via a hostname rather than the
IP address found in the Homestead.yaml file. If you’re running OSX or Linux, this file is found at
/etc/hosts. If you’re runningWindows, you’ll find the file at C:\Windows\System32\drivers\etc\hosts.
Open up this file and add the following line:

Chapter 1. Introducing Laravel 14

1 192.168.10.10 dev.todoparrot.com

After saving these changes, we’ll want to create the Laravel project that will be served via this
URL. However, there still remains plenty to talk about regarding Homestead and virtual machine
management so in the sections that follow I discuss several important matters pertaining to this
topic. For the moment though I suggest jumping ahead to the section “Creating the TODOParrot
Application” and returning to the below sections later.

Managing Your Virtual Machine

There are a few administrative tasks you’ll occasionally need to carry out regarding management
of your virtual machine. For example, if you’d like to shut down the virtual machine you can do so
using the following command:

1 $ vagrant halt

2 ==> default: Attempting graceful shutdown of VM...

3 $

To later boot the machine back up, you can execute vagrant up as we did previously:

1 $ vagrant up

If you’d like to delete the virtual machine (including all data within it), you can use the destroy

command:

1 $ vagrant destroy

I stress executing the destroy command this will delete the virtual machine and all of its data!
Executing this command is very different from shutting down the machine using halt.

If you happen to have installed more than one box (it can be addictive), use the box list command
to display them:

1 $ vagrant box list

2 laravel/homestead (virtualbox, 0.4.2)

These are just a few of the many commands available to you. Run vagrant --help for a complete
listing of what’s available:

Chapter 1. Introducing Laravel 15

1 $ vagrant --help

SSH’ing Into Your Virtual Machine

Because Homestead is a virtual machine running Ubuntu, you can SSH into it just as you would any
other server. For instance you might wish to configure nginx or MySQL, install additional software,
or make other adjustments to the virtual machine environment. If you’re running Linux or OS X,
you can SSH into the virtual machine using the ssh command:

1 $ ssh vagrant@127.0.0.1 -p 2222

2 Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.19.0-25-generic x86_64)

3

4 * Documentation: https://help.ubuntu.com/

5 Last login: Thu Mar 10 17:11:55 2016 from 10.0.2.2

Windows users will need to first install an SSH client. A popular Windows SSH client is PuTTY²⁷.

In either case, you’ll be logged in as the user vagrant, and if you list this user’s home directory
contents you’ll see the Code directory defined in the Homestead.yaml file:

1 vagrant@homestead:~$ ls

2 Code

If you’re new to Linux be sure to spend some time nosing around Ubuntu! This is a perfect
opportunity to get familiar with the Linux operating system without any fear of doing serious
damage to a server because if something happens to break you can always reinstall the virtual
machine.

Transferring Files Between Homestead and Your Laptop

If you create a file on a Homestead and would like to transfer it to your laptop, you have two
options. The easiest involves SSH’ing into Homestead and moving the file into one of your shared
directories, because the file will instantly bemade available for retrieval via your laptop’s file system.
For instance if you’re following along with the dev.todoparrot.com directory configuration, you
can SSH into Homestead, move the file into /home/vagrant/dev.todoparrot.com, and then logout
of SSH. Then using your local terminal, navigate to ∼/Code/dev.todoparrot.com and you’ll find
the desired file sitting in your local dev.todoparrot.com root directory.

Alternatively, you can use sftp to login to Homestead, navigate to the desired directory, and transfer
the file directly:

²⁷http://www.putty.org/

http://www.putty.org/
http://www.putty.org/

Chapter 1. Introducing Laravel 16

1 $ sftp -P 2222 vagrant@127.0.0.1

2 Connected to 127.0.0.1.

3 sftp> cd dev.farm.com

4 sftp> get hello.txt

5 Fetching /home/vagrant/dev.todoparrot.com/db.sql.gz to db.sql.gz

6 /home/vagrant/dev.farm.com/db.sql.gz 0% 0 0.0KB/s --:-- ETA

7 sftp>

Connecting to Your Database

Although this topic won’t really be relevant until we discuss databases in chapter 3, this nonetheless
seems a logical place to show you how to connect to your project’s Homestead database. If you
return to Homestead.yaml, you’ll find the following section:

1 databases:

2 - homestead

This section is used to define any databases you’d like to be automatically created when the virtual
machine is first booted (or re-provisioned; more about this in the next section). As you can see, a
default database named homestead has already been defined. You can sign into this database now
by SSH’ing into the machine and using the mysql client:

1 $ ssh vagrant@127.0.0.1 -p 2222

2 Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.19.0-25-generic x86_64)

3

4 * Documentation: https://help.ubuntu.com/

5 Last login: Wed Mar 23 00:56:23 2016 from 10.0.2.2

After signing in, enter the database using the mysql client, supplying the default username of
homestead and the desired database (also homestead). When prompted for the password, enter
secret:

1 vagrant@homestead:~$ mysql -u homestead homestead -p

2 Enter password:

3 Reading table information for completion of table and column names

4 You can turn off this feature to get a quicker startup with -A

5

6 Welcome to the MySQL monitor. Commands end with ; or \g.

7 Your MySQL connection id is 2330

8 Server version: 5.7.11 MySQL Community Server (GPL)

9

Chapter 1. Introducing Laravel 17

10 Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

11

12 Oracle is a registered trademark of Oracle Corporation and/or its

13 affiliates. Other names may be trademarks of their respective

14 owners.

15

16 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

17

18 mysql>

There are of course no tables in the database (we’ll do this in chapter 3), but feel free to have a look
anyway:

1 mysql> show tables;

2 Empty set (0.00 sec)

To exit the mysql client, just execute exit:

1 mysql> exit;

2 Bye

3 $

Chances are you prefer to interact with your database using a GUI-based application such as Sequel
Pro²⁸ or phpMyAdmin²⁹. You’ll connect to the homestead database like you would any other, by
supplying the username (homestead), password (secret), and the host, which is 192.168.10.10. For
instance, the following screenshot depicts my Sequel Pro connection window:

²⁸http://www.sequelpro.com/
²⁹https://www.phpmyadmin.net/

http://www.sequelpro.com/
http://www.sequelpro.com/
https://www.phpmyadmin.net/
http://www.sequelpro.com/
https://www.phpmyadmin.net/

Chapter 1. Introducing Laravel 18

The Sequel Pro connection window

Of course, you may want to change the name of this default database, or define additional databases
as the number of projects you manage via Homestead grows in size. I’ll show you how to do this
next.

Defining Multiple Homestead Sites and Databases

My guess is you’ll quickly become so enamored with Homestead that it will be the default solution
for managing all of your Laravel projects. This means you’ll need to define multiple projects
within the Homestead.yaml file. Fortunately, doing so is easier than you think. Check out the
following slimmed down version of my own Homestead.yaml file, which defines two projects
(dev.larabrain.com and dev.todoparrot.com):

Chapter 1. Introducing Laravel 19

1 folders:

2 - map: ~/Code/dev.larabrain.com

3 to: /home/vagrant/dev.larabrain.com

4 - map: ~/Code/dev.todoparrot.com

5 to: /home/vagrant/dev.todoparrot.com

6

7 sites:

8 - map: dev.larabrain.com

9 to: /home/vagrant/dev.larabrain.com/public

10 - map: dev.todoparrot.com

11 to: /home/vagrant/dev.todoparrot.com/public

12

13 databases:

14 - dev_larabrain_com

15 - dev_todoparrot_com

Notice how I’ve also defined two different databases, since each application will logically want its
own location to store data.

After saving these changes, you’ll want your virtual server to be reconfigured accordingly. If
you have never started your virtual server, running vagrant up will be suffice because the
Homestead.yaml file had never previously been read. However, if you’ve already started the VM
then you’ll need to force Homestead to reprovision the virtual machine. This involves reloading the
configuration. To do so, you’ll first need to find the identifier used to present the currently running
machine:

1 $ vagrant global-status

2 id name provider state directory

3 --

4 6f13a59 default virtualbox running /Users/wjgilmore/Homestead

Copy and paste that id value (6f13a59 in my case), supplying it as an argument to the following
command:

1 $ vagrant reload --provision 6f13a59

2 ==> default: Attempting graceful shutdown of VM...

3 ==> default: Checking if box 'laravel/homestead' is up to date...

4 ==> default: Clearing any previously set forwarded ports...

5 ==> default: Clearing any previously set network interfaces...

6 ==> default: Preparing network interfaces based on configuration...

7 ...

Once this command completes, your latest Homestead.yaml changes will be in place!

Chapter 1. Introducing Laravel 20

Introducing Valet

Virtual machines and ready-made environments such as Homestead are great, and have become
indispensable tools I use on a daily basis. However Homestead can admittedly be rather intimidating
for newcomers, and can frankly be overkill for many developers. If you use a Mac and are interested
in a no-frills development environment, Laravel offers a streamlined solution called Valet which can
be configured in mere minutes.

Installing Valet

To install Valet you’ll need to first install Homebrew (http://brew.sh/), the community-driven
package manager for OS X. As you’ll see on the home page, Homebrew is very easy to install and
should only take a moment to complete. Once done, you’ll want to install PHP 7. You can do so by
executing the following command:

1 $ brew install homebrew/php/php70

Next you’ll install Valet using Composer. Like Homebrew, Composer (https://getcomposer.org) is a
package manager but is specific to PHP development, and is similarly easy to install. With Composer
installed, install Valet using the following command:

1 $ composer global require laravel/valet

Finally, configure Valet by running the following command, which among other things will ensure
it always starts automatically when you reboot your machine:

1 $ valet install

Presuming your Laravel applications will use a database, you’ll also need to install a database such
as MySQL or MariaDB. You can easily install either using Homebrew. For instance, you can install
MySQL like so:

1 $ brew install mysql

After installation completes just follow the instructions displayed in the terminal to ensure MySQL
starts automatically upon system boot.

Serving Sites with Valet

With Valet installed and configured, you’ll next want to create a directory to host your various
Laravel projects. I suggest creating this directory in your home directory; consider calling it
something easily recognizable such as Code or Projects. Enter this directory using your terminal
and execute the following command:

Chapter 1. Introducing Laravel 21

1 $ valet park

2 This directory has been added to Valet's paths.

The park command tells Valet monitor this directory for Laravel projects, and automatically make
a convenient URL available for viewing the project in your browser. For instance, while inside the
project directory create a new Laravel project named todoparrot:

1 $ laravel new todoparrot

After creating the project, open your browser and navigate to http://todoparrot.dev and you’ll
see the project’s default splash screen (presented in the following screenshot).

The Laravel splash page

It doesn’t get any easier than that!

Creating the TODOParrot Application

With Laravel (and presumably Homestead or Valet) installed and configured, it’s time to get our
hands dirty! We’re going to start by creating the TODOParrot application, as it will serve as the
basis for much of the instructional material presented throughout this book. Create a new Laravel
project using the laravel command:

1 $ laravel new todoparrot

Of course, you can call the project directory anything you want. If you’re using Valet, then you’re
free to place the project directory anywhere you please. However, if you’re using Homestead,
recall Homestead expects the application to reside in the directory you specified within the
Homestead.yaml file’s folders structure’s map property. As a reminder here is what mine looks
like:

Chapter 1. Introducing Laravel 22

1 folders:

2 - map: ~/Code/todoparrot

3 - to: /home/vagrant/Code

These contents are a combination of files and directories, each of which plays an important role
in the functionality of your application so it’s important for you to understand their purpose. Let’s
quickly review the role of each:

• .env: Laravel 5 uses the PHP dotenv³⁰ library to conveniently manage your application’s
configuration variables. You’ll use .env file as the basis for configuring these settings. A file
named .env.example is also included in the project root directory, which should be used as
a template from which fellow developers will copy over to .env and modify to suit their own
needs. I’ll talk more about these files and practical approaches for managing your environment
settings in the later section, “Configuring Your Laravel Application”.

• .gitattributes: This file is used by Git³¹ to ensure consistent settings across machines, which
is useful when multiple developers using a variety of operating systems are working on the
same project. You’ll find a few default settings in the file, however these are pretty standard
and you in all likelihood won’t have to modify them. Plenty of other attributes are however
available; Scott Chacon’s online book, “Pro Git”³² includes a section (“Customizing Git - Git
Attributes”³³) with further coverage on this topic.

• .gitignore: This file tells Git what files and folders should not be included in the repository.
You’ll see a few default settings in here, including the vendor directory which houses the
Laravel source code and other third-party packages, and the .env file, which should never be
managed in version control since it presumably contains sensitive settings such as database
passwords.

• app: This directory contains much of the custom code used to power your application,
including the models, controllers, and middleware. We’ll spend quite a bit of time inside this
directory as the book progresses.

• artisan: artisan is a command-line tool we’ll use to rapidly create new parts of your
applications such as controllers and models, manage your database’s evolution through a
great feature known as migrations, and interactively debug your application. We’ll return
to artisan repeatedly throughout the book because it is such an integral part of Laravel
development.

• bootstrap: This directory contains the various files used to initialize a Laravel application,
loading the configuration files, various application models and other classes, and define the
locations of key directories such as app and public. Normally you won’t have to modify any
of the files found in this directory.

³⁰https://github.com/vlucas/phpdotenv
³¹http://git-scm.com/
³²http://git-scm.com/book
³³http://git-scm.com/book/en/Customizing-Git-Git-Attributes

https://github.com/vlucas/phpdotenv
http://git-scm.com/
http://git-scm.com/book
http://git-scm.com/book/en/Customizing-Git-Git-Attributes
http://git-scm.com/book/en/Customizing-Git-Git-Attributes
https://github.com/vlucas/phpdotenv
http://git-scm.com/
http://git-scm.com/book
http://git-scm.com/book/en/Customizing-Git-Git-Attributes

Chapter 1. Introducing Laravel 23

• composer.json: Composer³⁴ is PHP’s de facto package manager, used by thousands of
developers around the globe to quickly integrate popular third-party solutions such as Swift
Mailer³⁵ and Doctrine³⁶ into a PHP application. Laravel heavily depends upon Composer, and
you’ll use the composer.json file to identify the packages you’ll like to integrate into your
Laravel application. If you’re not familiar with Composer by the time you’re done reading
this book you’ll wonder how you ever lived without it. In fact in this introductory chapter
alone we’ll use it several times to install various useful packages.

• composer.lock: This file contains information about the state of your project’s installed
Composer packages at the time these packages were last installed and/or updated. Like the
bootstrap directory, you will rarely if ever directly interact with this file.

• config: This directory contains several files used to configure various aspects of your Laravel
application, such as the database credentials, the cache, e-mail delivery, and session settings.

• database: This directory contains the directories used to house your project’s database
migrations and seed data (migrations and database seeding are both introduced in Chapter 3).

• gulpfile.js: Laravel 5.0 introduced a new feature called Laravel Elixir. Elixir relies upon the
Gulpfile.js file to define various Gulp.js³⁷ tasks useful for automating various build-related
processes associated with your project’s CSS, JavaScript, tests, and other assets. I’ll introduce
Elixir in Chapter 2.

• package.json: This file is used by the aforementioned Elixir to install Elixir and its various
dependencies. I’ll talk about this file in Chapter 2.

• phpunit.xml: Even trivial web applications should be accompanied by an automated test suite.
Laravel leaves little room for excuse to avoid this best practice by automatically configuring
your application to use the popular PHPUnit³⁸ test framework. The phpunit.xml is PHPUnit’s
application configuration file, defining characteristics such as the location of the application
tests. We’ll return to the topic of testing repeatedly throughout the book.

• public: The public directory serves as your application’s web root directory, housing the
.htaccess, robots.txt, and favicon.ico files, in addition to a file named index.php that is
the first file to execute when a user accesses your application. This file is known as the front
controller, and it is responsible for loading and executing the application. It’s because the
index.php file serves as the front controller that you needed to identify the public directory
as your application’s root directory when configuring Homestead.yaml earlier in this chapter.

• readme.md: The readme.md file contains some boilerplate information about Laravel of the
sort that you’ll typically find in an open source project. Feel free to replace this text with
information about your specific project. See the TODOParrot³⁹ README file for an example.

• resources: The resources directory contains your project’s views and localized language
files. You’ll also store your project’s raw assets such as CoffeeScript and Saas files.

³⁴https://getcomposer.org
³⁵http://swiftmailer.org/
³⁶http://www.doctrine-project.org/
³⁷http://gulpjs.com/
³⁸http://phpunit.de/
³⁹http://github.com/wjgilmore/todoparrot

https://getcomposer.org/
http://swiftmailer.org/
http://swiftmailer.org/
http://www.doctrine-project.org/
http://gulpjs.com/
http://phpunit.de/
http://github.com/wjgilmore/todoparrot
https://getcomposer.org/
http://swiftmailer.org/
http://www.doctrine-project.org/
http://gulpjs.com/
http://phpunit.de/
http://github.com/wjgilmore/todoparrot

Chapter 1. Introducing Laravel 24

• routes: The routes directory is new to 5.3. It replaces the old app/Http/routes.php file,
and separates your application’s routing definitions into three separate files: api.php, con-
sole.php, and web.php. Collectively, these files determine how your application responds to
different endpoints. We’ll return to these files repeatedly throughout the book, beginning in
Chapter 2.

• server.php: The server.php file can be used to bootstrap your application for the purposes of
serving it via PHP’s built-in web server. While a nice feature, Homestead offers a far superior
development experience and so you can safely ignore this file and feature.

• storage: The storage directory contains your project’s cache, session, and log data.
• tests: The tests directory contains your project’s PHPUnit tests. Testing is a recurring theme
throughout this book, and thanks to Laravel’s incredibly simple test integration features I
highly encourage you to follow along closely with the examples provided in these sections.

• vendor: The vendor directory is where the Laravel framework code itself is stored, in addition
to any other third-party code. You won’t typically directly interact with anything found in
this directory, instead doing so through the Composer interface.

Now that you have a rudimentary understanding of the various directories and files compris-
ing a Laravel skeleton application let’s see what happens when we load the default applica-
tion into a browser. Presuming you’ve configured Homestead and generated the Laravel project
in the appropriate directory, you should be able to navigate to http://dev.todoparrot.com

(http://todoparrot.dev if you’re using Valet) and see the page presented in the below screenshot:

The Laravel splash page

So where does this splash page come from? It’s found in a view, and in the next chapter I’ll introduce
Laravel views in great detail.

Chapter 1. Introducing Laravel 25

Setting the Application Namespace

Laravel 5 uses the PSR-4 autoloading standard⁴⁰, meaning your project controllers, models, and other
key resources are namespaced. The default namespace is set to App, which is pretty generic, however
if you don’t plan on distributing your application to third-parties then the default is going to be just
fine. If you did want to update your project’s namespace to something unique, such as Todoparrot.
You can do so using the artisan CLI’s app:name command:

1 $ php artisan app:name Todoparrot

2 Application namespace set!

This command will not only update the default namespace setting (by modifying composer.json’s
autoload/psr-4 setting), but will additionally updating any namespace declarations found in your
controllers, models, and other relevant files.

Because I’m not distributing IgniteRental as software which might be integrated into an application,
I’ve left the default namespace as App.

Configuring Your Laravel Application

Laravel offers environment-specific configuration, meaning you can define certain behaviors
applicable only when you are developing the application, and other behaviors when the application
is running in production. For instance you’ll certainly want to output errors to the browser during
development but ensure errors are only output to the log in production.

Your application’s default configuration settings are found in the config directory, and are managed
in a series of files including:

• app.php: The app.php file contains settings that have application-wide impact, including
whether debug mode is enabled (more on this in a moment), the application URL, timezone,
and locale.

• auth.php: The auth.php file contains settings specific to user authentication, including what
model manages your application users, the database table containing the user information, and
how password reminders are managed. I’ll talk about Laravel’s user authentication features
in Chapter 7.

• broadcasting.php: The broadcasting.php is used to configure the event broadcasting
feature, which is useful when you want to simultaneously notify multiple application users
of some event such as the addition of a new blog post. I discuss event broadcasting in Chapter
11.

⁴⁰http://www.php-fig.org/psr/psr-4/

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

Chapter 1. Introducing Laravel 26

• cache.php: Laravel supports several caching drivers, including filesystem, database, mem-
cached, redis, and others. You’ll use the cache.php configuration file to manage various
settings specific to these drivers.

• compile.php: Laravel can improve application performance by generating a series of files that
allow for faster package autoloading. The compile.php configuration file allows you to define
additional class files that should be included in the optimization step.

• database.php: The database.php configuration file defines a variety of database settings,
includingwhich of the supported databases the project will use, and the database authorization
credentials. You’ll learn all about Laravel’s database support in chapters 3 and 4.

• filesystems.php: The filesystems.php configuration file defines the file system your
project will use to manage assets such as file uploads. Thanks to Laravel’s integration with
Flysystem⁴¹, support is available for a wide variety of adapters, among them the local disk,
Amazon S3, Azure, Dropbox, FTP, Rackspace, and Redis.

• mail.php: As you’ll learn in Chapter 5 it’s pretty easy to send an e-mail from your Laravel
application. The mail.php configuration file defines various settings used to send those e-
mails, including the desired driver (a variety of which are supported, among them Sendmail,
SMTP, PHP’s mail() function, and Mailgun). You can also direct mails to the log file, a
technique that is useful for development purposes.

• queue.php: Queues can improve application performance by allowing Laravel to offload time-
and resource-intensive tasks to a queueing solution such as Beanstalk⁴² or Amazon Simple
Queue Service⁴³. The queue.php configuration file defines the desired queue driver and other
relevant settings.

• services.php: If your application uses a third-party service such as Stripe for payment
processing or Mailgun for e-mail delivery you’ll use the services.php configuration file to
define any third-party service-specific settings.

• session.php: It’s entirely likely your application will use sessions to aid in the management of
user preferences and other customized content. Laravel supports a number of different session
drivers used to facilitate the management of session data, including the file system, cookies,
a database, the Alternative PHP Cache, Memcached, and Redis. You’ll use the session.php

configuration file to identify the desired driver, and manage other aspects of Laravel’s session
management capabilities.

• view.php: The view.php configuration file defines the default location of your project’s view
files and the renderer used for pagination.

I suggest spending a few minutes nosing around these files to get a better idea of what configuration
options are available to you. There’s no need to make any changes at this point, but it’s always nice
to know what’s possible.

⁴¹https://github.com/thephpleague/flysystem
⁴²http://kr.github.io/beanstalkd/
⁴³http://aws.amazon.com/sqs/

https://github.com/thephpleague/flysystem
http://kr.github.io/beanstalkd/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
https://github.com/thephpleague/flysystem
http://kr.github.io/beanstalkd/
http://aws.amazon.com/sqs/

Chapter 1. Introducing Laravel 27

Configuring Your Environment

Your application will likely require access to database credentials and other sensitive information
such as API keys for accessing third party services. This confidential information should never
be shared with others, and therefore you’ll want to take care it isn’t embedded directly into the
code. Instead, you’ll want to manage this data within environment variables, and then refer to these
variables within the application.

Laravel supports a very convenient solution for managing and retrieving these variables thanks to
integration with the popular PHP dotenv⁴⁴ package. When developing your application you’ll define
environment variables within the .env file found in your project’s root directory. The default .env
file looks like this:

1 APP_ENV=local

2 APP_KEY=base64:Xq9+pNBKPc1IskLbT7M3Y08kzQ=

3 APP_DEBUG=true

4 APP_LOG_LEVEL=debug

5 APP_URL=http://localhost

6

7 DB_CONNECTION=mysql

8 DB_HOST=127.0.0.1

9 DB_PORT=3306

10 DB_DATABASE=homestead

11 DB_USERNAME=homestead

12 DB_PASSWORD=secret

13

14 BROADCAST_DRIVER=log

15 CACHE_DRIVER=file

16 SESSION_DRIVER=file

17 QUEUE_DRIVER=sync

18

19 REDIS_HOST=127.0.0.1

20 REDIS_PASSWORD=null

21 REDIS_PORT=6379

22

23 MAIL_DRIVER=smtp

24 MAIL_HOST=mailtrap.io

25 MAIL_PORT=2525

26 MAIL_USERNAME=null

27 MAIL_PASSWORD=null

28 MAIL_ENCRYPTION=null

29

⁴⁴https://github.com/vlucas/phpdotenv

https://github.com/vlucas/phpdotenv
https://github.com/vlucas/phpdotenv

Chapter 1. Introducing Laravel 28

30 PUSHER_APP_ID=

31 PUSHER_KEY=

32 PUSHER_SECRET=

These variables can be retrieved anywhere within your application using the env() function. For
instance, the config/database.php is used to define your project’s database connection settings
(we’ll talk more about this file in Chapter 3). It retrieves the DB_HOST, DB_DATABASE, DB_USERNAME,
and DB_PASSWORD variables defined within .env:

1 'mysql' => [

2 'driver' => 'mysql',

3 'host' => env('DB_HOST', 'localhost'),

4 'port' => env('DB_PORT', '3306'),

5 'database' => env('DB_DATABASE', 'forge'),

6 'username' => env('DB_USERNAME', 'forge'),

7 'password' => env('DB_PASSWORD', ''),

8 'charset' => 'utf8',

9 'collation' => 'utf8_unicode_ci',

10 'prefix' => '',

11 'strict' => true,

12 'engine' => null,

13],

You’ll see the .gitignore includes .env by default. This is because you should never manage
.env in your version control repository! Instead, when it comes time to deploy your application
to production, you’ll define the variables found in .env as server environment variables which can
also be retrieved using PHP’s env() function. I’ll talk more about managing these variables in your
other environments in Chapter 9.

We’ll return to the configuration file throughout the book as new concepts and features are
introduced.

Useful Development and Debugging Tools

There are several native Laravel features and third-party tools that can dramatically boost produc-
tivity by reducing the amount of time and effort spent identifying and resolving bugs. In this section
I’ll introduce you to a few of my favorite solutions, and additionally show you how to install and
configure the third-party tools.

Chapter 1. Introducing Laravel 29

The debugging and development utilities discussed in this section are specific to Laravel,
and do not take into account the many other tools available to PHP in general. Be sure to
check out Xdebug⁴⁵, FirePHP⁴⁶, and the many tools integrated into PHP IDEs such as Zend
Studio⁴⁷ and PHPStorm⁴⁸.

The dd() Function

Ensuring the .env file’s APP_DEBUG variable is set to true is the easiest way to view information
about any application errors, because Laravel will dump error- and exception-related information
directly to the browser. However, sometimes you’ll want to peer into the contents of an object or
array even if the data structure isn’t causing any particular problem or error. You can do this using
Laravel’s dd()⁴⁹ helper function, which will dump a variable’s contents to the browser and halt
further script execution. For example suppose you defined an array inside a Laravel application and
wanted to output its contents to the browser. Here’s an example array:

1 $items = [

2 'items' => [

3 'Pack luggage',

4 'Go to airport',

5 'Arrive in San Juan'

6]

7];

You could execute the dd() function like so:

1 dd($items);

Passing $items into dd() will cause the array contents to be dumped to the browser window as
depicted in the below screenshot.

⁴⁵http://xdebug.org/
⁴⁶http://www.firephp.org/
⁴⁷http://www.zend.com/en/products/studio
⁴⁸http://www.jetbrains.com/phpstorm/
⁴⁹https://laravel.com/docs/master/helpers#method-dd

http://xdebug.org/
http://www.firephp.org/
http://www.zend.com/en/products/studio
http://www.zend.com/en/products/studio
http://www.jetbrains.com/phpstorm/
https://laravel.com/docs/master/helpers#method-dd
http://xdebug.org/
http://www.firephp.org/
http://www.zend.com/en/products/studio
http://www.jetbrains.com/phpstorm/
https://laravel.com/docs/master/helpers#method-dd

Chapter 1. Introducing Laravel 30

dd() function output

Of course, it is likely at this point you don’t know where this code would even be executed.
Not to worry! In the chapters to come just keep this and the following solutions in mind
so you can easily debug your code once we start building the application.

The Laravel Logger

While the dd() helper function is useful for quick evaluation of a variable’s contents, taking advan-
tage of Laravel’s logging facilities is a more effective approach if you plan on repeatedly monitoring
one or several data structures or events without interrupting script execution. Laravel will by
default log error-related messages to the application log, located at storage/logs/laravel.log.

Chapter 1. Introducing Laravel 31

Because Laravel’s logging features are managed by Monolog⁵⁰, you have a wide array of additional
logging options at your disposal, including the ability to write log messages to this log file, set
logging levels, send log output to the Firebug console⁵¹ via FirePHP⁵², to the Chrome console⁵³ using
Chrome Logger⁵⁴, or even trigger alerts via e-mail, HipChat⁵⁵ or Slack⁵⁶. Further, if you’re using the
Laravel Debugbar (introduced later in this chapter) you can easily peruse these messages from the
Debugbar’s Messages tab.

Generating a custom log message is easy, done by embedding one of several available logging
methods into the application, passing along the string or variable you’d like to log. Returning to
the $items array, suppose you instead wanted to log its contents to Laravel’s log:

1 $items = [

2 'Pack luggage',

3 'Go to airport',

4 'Arrive in San Juan'

5];

6

7 \Log::debug($items);

After reloading the browser to execute this code, you’ll see a log message similar to the following
will be appended to storage/logs/laravel.log:

1 [2016-09-21 09:14:29] local.DEBUG: array (

2 'items' =>

3 array (

4 0 => 'Pack luggage',

5 1 => 'Go to airport',

6 2 => 'Arrive in San Juan',

7),

8)

The debug-level message is just one of several at your disposal. Among other levels are info, warning,
error and critical, meaning you can use similarly named methods accordingly:

⁵⁰https://github.com/Seldaek/monolog
⁵¹https://getfirebug.com/
⁵²http://www.firephp.org/
⁵³https://developer.chrome.com/devtools/docs/console
⁵⁴http://craig.is/writing/chrome-logger
⁵⁵http://hipchat.com/
⁵⁶https://www.slack.com/

https://github.com/Seldaek/monolog
https://getfirebug.com/
http://www.firephp.org/
https://developer.chrome.com/devtools/docs/console
http://craig.is/writing/chrome-logger
http://hipchat.com/
https://www.slack.com/
https://github.com/Seldaek/monolog
https://getfirebug.com/
http://www.firephp.org/
https://developer.chrome.com/devtools/docs/console
http://craig.is/writing/chrome-logger
http://hipchat.com/
https://www.slack.com/

Chapter 1. Introducing Laravel 32

1 \Log::info('Just an informational message.');

2 \Log::warning('Something may be going wrong.');

3 \Log::error('Something is definitely going wrong.');

4 \Log::critical('Danger, Will Robinson! Danger!');

Integrating the Logger and FirePHP

When monitoring the log file it’s common practice to use the tail -f command (available on Linux
and OS X) to view any log file changes in real time. You can however avoid the additional step of
maintaining an additional terminal window for such purposes by instead sending the log messages
to the Firebug⁵⁷ console, allowing you to see the log messages alongside your application’s browser
output. You’ll do this by integrating FirePHP⁵⁸.

You’ll first need to install the Firebug and FirePHP⁵⁹ extensions. If you’re running Firefox, both are
available via Mozilla’s official add-ons site. If you’re running another browser such as Chrome, you
can install Firebug Lite⁶⁰ and FirePHP4Chrome. After restarting your browser, you can begin sending
log messages directly to the browser console by adding the following to bootstrap/app.php:

1 $app->configureMonologUsing(function($monolog) {

2 $monolog->pushHandler(new \Monolog\Handler\FirePHPHandler());

3 });

After saving the changes, you can log for instance the $items array just as you did previously:

1 \Log::debug($items);

Once executed, the $items array will appear in your browser console as depicted in the below
screenshot.

⁵⁷https://getfirebug.com/
⁵⁸http://www.firephp.org/
⁵⁹https://addons.mozilla.org/en-US/firefox/addon/firephp/
⁶⁰https://getfirebug.com/firebuglite

https://getfirebug.com/
http://www.firephp.org/
https://addons.mozilla.org/en-US/firefox/addon/firephp/
https://getfirebug.com/firebuglite
https://getfirebug.com/
http://www.firephp.org/
https://addons.mozilla.org/en-US/firefox/addon/firephp/
https://getfirebug.com/firebuglite

Chapter 1. Introducing Laravel 33

Logging to the Chrome console via Firebug Lite and FirePHP

Using the Tinker Console

You’ll often want to test a small PHP snippet or experiment with manipulating a particular data
structure, but creating and executing a PHP script for such purposes is kind of tedious. You can
eliminate the additional overhead by instead using the tinker console, a command line-based
window into your Laravel application. Open tinker by executing the following command from your
application’s root directory:

Chapter 1. Introducing Laravel 34

1 $ php artisan tinker

2 Psy Shell v0.7.2 (PHP 7.0.6 â€” cli) by Justin Hileman

3 >>>

Tinker uses PsySH⁶¹, a great interactive PHP console and debugger. PsySH is new to Laravel 5, and
is a huge improvement over the previous console. Be sure to take some time perusing the feature list
on the PsySH website⁶² to learn more about what this great utility can do. In the meantime, let’s get
used to the interface:

1 >>> $items = ['Pack luggage', 'Go to airport', 'Arrive in San Juan'];

2 => [

3 "Pack luggage",

4 "Go to airport",

5 "Arrive in San Juan"

6]

Fromhere you could for instance learnmore about how to sort an array using PHP’s sort() function:

1 >>> sort($items);

2 => true

3 >>> $items;

4 => [

5 "Arrive in San Juan",

6 "Go to airport",

7 "Pack luggage"

8]

9 >>>

After you’re done, type exit to exit the PsySH console:

1 >>> exit

2 Exit: Goodbye.

3 $

The Tinker console can be incredibly useful for quickly experimenting with PHP snippets, and I’d
imagine you’ll find yourself repeatedly returning to this indispensable tool. We’ll take advantage of
Tinker throughout the book to get acquainted with various Laravel features.

⁶¹http://psysh.org/
⁶²http://psysh.org/

http://psysh.org/
http://psysh.org/
http://psysh.org/
http://psysh.org/

Chapter 1. Introducing Laravel 35

Introducing the Laravel Debugbar

It can quickly become difficult to keep tabs on the many different events that are collectively
responsible for assembling the application response. You’ll regularly want to monitor the status
of database requests, routing definitions, view rendering, e-mail transmission and other activities.
Fortunately, there exists a great utility called Laravel Debugbar⁶³ that provides easy access to the
status of these events and much more by straddling the bottom of your browser window (see below
screenshot).

The Laravel Debugbar

The Debugbar is visually similar to Firebug⁶⁴, consisting of multiple tabs that when clicked result in
context-related information in a panel situated below the menu. These tabs include:

• Messages: Use this tab to view log messages directed to the Debugbar. I’ll show you how to
do this in a moment.

• Timeline: This tab presents a summary of the time required to load the page.
• Exceptions: This tab displays any exceptions thrown while processing the current request.
• Views: This tab provides information about the various views used to render the page,
including the layout.

• Route: This tab presents information about the requested route, including the corresponding
controller and action.

⁶³https://github.com/barryvdh/laravel-debugbar
⁶⁴http://getfirebug.com

https://github.com/barryvdh/laravel-debugbar
http://getfirebug.com/
https://github.com/barryvdh/laravel-debugbar
http://getfirebug.com/

Chapter 1. Introducing Laravel 36

• Queries: This tab lists the SQL queries executed in the process of serving the request.
• Mails: This tab presents information about any e-mails delivered while processing the request.
• Session: This table presents any session-related information made available while processing
the request.

• Request: This tab lists information pertinent to the request, including the status code, request
headers, response headers, and session attributes.

To install the Laravel Debugbar, execute the following command:

1 $ composer require barryvdh/laravel-debugbar --dev

2 Using version ^2.2 for barryvdh/laravel-debugbar

3 ./composer.json has been updated

4 Loading composer repositories with package information

5 ...

6 $

Next, add the following lines to the providers and aliases arrays to your config/app.php file,
respectively:

1 'providers' => [

2 ...

3 Barryvdh\Debugbar\ServiceProvider::class,

4],

5

6 ...

7

8 'aliases' => [

9 ...

10 'Debugbar' => Barryvdh\Debugbar\Facade::class,

11]

Save the changes and install the package configuration to your config directory:

1 $ php artisan vendor:publish

While you don’t have to make any changes to this configuration file (found in config/debug-

bar.php), I suggest having a look at it to see what changes are available.

Reload the browser and you should see the Debugbar at the bottom of the page! Keep in mind the
Debugbar will only render when used in conjunction with an endpoint that actually renders a view
to the browser.

The Laravel Debugbar is tremendously useful as it provides easily accessible insight into several key
aspects of your application. Additionally, you can use the Messages panel as a convenient location
for viewing log messages. Logging to the Debugbar is incredibly easy, done using the Debugbar
facade:

Chapter 1. Introducing Laravel 37

1 \Debugbar::error('Something is definitely going wrong.');

Save the changes and reload the home page within the browser. Check the Debugbar’s Messages
panel and you’ll see the logged message! Like the Laravel logger, the Laravel Debugbar supports the
log levels defined in PSR-3⁶⁵, meaning methods for debug, info, notice, warning, error, critical, alert
and emergency are available.

Testing Your Laravel Application with PHPUnit

Automated testing is a critical part of today’s web development workflow, and should not be ignored
even for the most trivial of projects. Fortunately, the Laravel developers agree with this mindset and
automatically include PHPUnit support with every new Laravel project. PHPUnit is a very popular
unit testing framework which allows you to create and execute well-organized tests used to confirm
all parts of your application are working as expected.

Each new Laravel application even includes an example test which you can use as a reference
for beginning to write your own tests! You’ll find this test inside the tests directory. It’s named
ExampleTest.php, and it demonstrates how to write a test that accesses the project home page, and
determines whether the text Laravel 5 is visible:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 /**

10 * A basic functional test example.

11 *

12 * @return void

13 */

14 public function testBasicExample()

15 {

16 $this->visit('/')

17 ->see('Laravel');

18 }

19 }

To run the test, execute the phpunit command from within your project’s root directory:

⁶⁵http://www.php-fig.org/psr/psr-3/

http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/

Chapter 1. Introducing Laravel 38

1 $ phpunit

2 PHPUnit 5.5.4 by Sebastian Bergmann and contributors.

3

4 . 1 / 1 (100%)

5

6 Time: 262 ms, Memory: 10.00MB

7

8 OK (1 test, 2 assertions)

See that single period residing on the line by itself? That represents a passed test, in this case the test
defined by the testBasicExamplemethod. If the test failed, you would instead see an F for error. To
see what a failed test looks like, open up tests/ExampleTest.php and locate the following line:

1 ->see('PHP');

Replace the string Laravel with anything you please, such as PHP. If you reload the browser after
saving the changes you’ll see the updated text. Now run execute phpunit anew:

1 $ phpunit

2 PHPUnit 5.5.4 by Sebastian Bergmann and contributors.

3

4 F 1 / 1 (100%)

5

6 Time: 262 ms, Memory: 10.00MB

7

8 There was 1 failure:

9

10 1) ExampleTest::testBasicExample

11 <head>

12 <meta charset="utf-8">

13 <meta http-equiv="X-UA-Compatible" content="IE=edge">

14 ...

15 Failed asserting that the page contains the HTML [PHP].

16 Please check the content above.

17

18 ...

19

20 FAILURES!

21 Tests: 1, Assertions: 2, Failures: 1.

This time the F is displayed, because the assertion defined in testBasicExample failed. Additionally,
information pertaining to why the test failed is displayed. In the chapters to come we will explore
other facets of PHPUnit and write plenty of additional tests.

Chapter 1. Introducing Laravel 39

Consider spending some time exploring the Laravel⁶⁶ documentation to learn more about the syntax
available to you. In any case, be sure to uncomment that route definition before moving on!

Conclusion

It’s only the end of the first chapter and we’ve already covered a tremendous amount of ground!
With your project generated and development environment configured, it’s time to begin building
the application. Onwards!

⁶⁶http://laravel.com/docs/master/testing

http://laravel.com/docs/master/testing
http://laravel.com/docs/master/testing

	Table of Contents
	Introduction
	What's New in Laravel 5?
	About this Book
	Introducing the TODOParrot Project
	About the Author
	Errata and Suggestions

	Chapter 1. Introducing Laravel
	Installing Laravel
	Managing Your Laravel Project Development Environment
	Creating the TODOParrot Application
	Configuring Your Laravel Application
	Useful Development and Debugging Tools
	Testing Your Laravel Application with PHPUnit
	Conclusion

